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Introduction 
  
This article discusses the use of statistical methods to improve competitive advantage in team 
sports. The focus for this paper is on baseball and more particularly standard and popular 
metrics used in determining player performance. Baseball’s popularity is steadily increasing 
around the world as more countries play the game. The United States, Japan, South Korea, and 
many Latin American countries rank baseball as the number one sport. Increasing team 
revenue has led the assignment of large contracts to individual team players; there is 
continuous pressure on the team management to find and maintain talent. Many teams have 
turned to Sabermetrics, a term used for a series of special statistics used in baseball. 
Traditionalists dislike the use of analytics for many of the decisions in the game, however, the 
professional teams apply analytics to gain better team positioning. An increased demand for 
more relevant and accurate analytics spurs research in the area among teams, however, there 
hasn’t been a corresponding increase of academic research on the subject. Baseball statistics 
offer a wealth of opportunity to researchers. 
  
In this article, we propose an examination of a single statistic, the Earned Run Average, ERA, a 
comparative measure for pitching success. Identifying a single bad performance, e.g. outlier, 
can provide a more representative measure of actual performance. Therefore, methods for 
defining outliers are imperative. Specifically, we provide a few alternatives for the removal of 
outliers, and propose a method by which to test its effectiveness. 
  
Literature Review 
  
Earned Run Average 
  
Statistics, plays an integral role in the game of baseball. Through the years, measures for hitters 
such as batting average (AVG), On Base Percentage (OBP), and Slugging Percentage (SLG) 
have been used to rank hitters. Pitchers’ ranking relies on total wins (W), strikeout to walk ratio 
(SO/BB), and Earned Run Average (ERA) rank hitters. In the 1970’s, Bill James, argued that the 
statistics employed do not accurately reflect the nature of the game (Puerzer, 2002). The work 
by Bill James and others in the field led to the development of metrics such as OBP, “On Base 
Percentage”, to include ways a hitter can get on base without a hit (Albert, 2010), and SLG, 
“Slugging Percentage”, to adequately weight hits that have greater value such as Home Runs 
(Gould, 2002). 
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For a team to be successful, it must win, and pitchers are a critical component for a team’s 
victory. Assessing a measure of success for pitchers should be related to wins. However, a 
game may have multiple pitchers, but only one pitcher can get a “win”. Therefore, the Earned 
Run Average has traditionally been used as the measure of successful performance. Earned 
Run Average is calculated as the number of Earned Runs divided by the number of innings 
pitched, times 9. It can be interpreted as the estimated number of earned runs a pitcher would 
yield in a nine inning, or complete, game. 
  
  

ERA = 9 * Number of earned runs / Number of innings pitched 
  
The ERA measure has been examined by researchers as a useful analytic for examining the 
effect of pay for performance (Sommers and Quinten, 1982), Discrimination (Andersen and 
LaCroix, 1991), and a comparative measure to psychological performance (Smith and 
Christensen, 1995). The flaw in the Earned Run Average however, is that it is not independent 
of team performance, nor is it a measure of the contribution made by the pitcher (Scully, 1972). 
  
  
Sabermetrics attempts to alleviate the problems with the use of ERA by introducing a number of 
alternative statistics such as Walks and Hits per Innings Pitched (WHIP), Defense-Independent 
ERA (dERA), Adjusted Earned Run Average (ERA+) and Fielding Independent Pitching (FIP). 
The numerous available statistics suggests the difficulty in providing any single measure of 
performance for pitchers, however, ERA is still a widely used and quoted measure of 
performance. 
  
  
The flaws of the ERA are fairly well documented. The arguments against ERA are rooted in the 
ERA’s sensitivity to the negative performance of the defense, or even by how scorers attribute 
an earned run. Further, managers may leave a pitcher in longer to provide more experience for 
a young pitcher, thereby increasing the probability of more runs, earned or otherwise, which in 
turn increases the ERA. In addition, a single bad performance by either the pitcher or their 
defense could inflate the pitcher’s overall ERA, and therefore, not be a respective measure of 
actual performance. Therefore, identifying these single performances that could possibly skew a 
pitcher’s true overall performance could be useful, and thus we note these performances as 
outliers.   
  

A number of methods are prescribed to identify outliers in a data set. One method would be to 
identify outliers as lying outside 3 standard deviations from the mean; however, since the 
distribution of earned runs is not normal, this may not be the most effective method. A common 
method of outlier detection is the method mentioned by Tukey (1977) whereby one uses the 
IQR as the principle point of reference. According to this method, observations that are 1.5 
times beyond the IQR are considered mild outliers, “inside the fence” and those that are 3 times 
the IQR are considered extreme outliers, “outside the fence”. While Tukey makes no 
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assumption on the distribution, it does assume the data is continuous (Tukey, 1977; Hubert and 
Vandervieren, 2008). Alternative, more robust measures have been made for normal 
distributions such as Grubbs Test (Grubbs, 1969), and an alternative for asymmetric 
distributions (Carling, 2000). 
 
Grubbs (1969) provides the rationale that an outlier naturally will be a measure of the distance 
to the mean, and thus extreme observations are those with larger distances. An alternative 
method, known as the alternative box plot method (Iglewicz and Banerjee, 2007) suggest that 
the sample and distribution will affect the multiplier proposed by Tukey (1977). These authors 
noted that their method works when sample sizes are large enough. Yet, they proposed 
alternative multipliers for smaller data sets. Other methods such as the Variance Shift Outlier 
Model (VSOM) have been proposed to identify outliers in linear models (Gumedze et al., 2010, 
Cook and Weisberg, 1982). Research suggests that using the variance change for identification 
of outliers in a univariate dataset is useful and promising (Tsay, 1988). 
  

In this article, we attempt to identify the proper distribution of the earned run, which is  count 
based data. Furthermore, in order to provide a more representative measure of actual 
performance, we attempt using a popular method for outlier detection. The purpose of this paper 
is only to identify right tailed outliers, since it is more likely for a professional pitcher to earn zero 
runs in a game than giving up 10 runs in a game. Finally, we propose an alternatives method for 
the removal of outliers against the popular method as a comparison. 
  
Methodology 
  
Distribution of Earned Runs 
  
It is important to understand the distribution of Earned Runs at the game level. It is possible that 
Earned Runs may follow a Poisson Distribution, Zero-Inflated Poisson Distribution, or a 
Negative Binomial Distribution, since the data is count based.  Dolinar (2014) provided evidence 
that the actual distribution of runs per game might be a negative binomial distribution. Assuming 
that the number of Earned Runs follows any of the above distributions, then the ERA statistic 
used in baseball is clearly flawed as a measure of performance, since it doesn’t take into 
account the distribution. 
  
Using sample data obtained for the top ten pitchers in the National League, we had 301 
observations, i.e. games pitched, with each pitcher pitching at least 28 games. Therefore, we 
had a reasonable sample of pitchers for this pilot. The ERA for these pitchers ranged from 2.33 
to 3.51. A closer examination of the total Earned Runs for each pitcher showed a variance 
higher than the mean overall (μ = 62.4, σ2 = 125.6). Similarly, the variance exceeded the mean 
for earned runs per game (μ = 2.07, σ2 = 3.41). 
  
Since the measure of Earned Run Average is used to assess a pitcher’s performance, we 
decided to focus on the earned runs per game. The goal is to determine if the performance of a 
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single game should be measured, and possibly removed, as an outlier.  Using the data 
available, we analyzed the earned runs and compared them to the described theoretical 
distributions (Table 1). 
  

ER Actual E(X) - Poisson E(X) - zip E(X) - NBin 

0 0.213 0.124 0.269 0.211 

1 0.249 0.259 0.149 0.260 

2 0.203 0.270 0.196 0.210 

3 0.130 0.188 0.172 0.140 

4 0.096 0.098 0.113 0.084 

5 0.060 0.041 0.060 0.046 

6 0.020 0.014 0.026 0.024 

7 0.017 0.004 0.010 0.012 

8 0.010 0.001 0.003 0.006 

9 0.003 0.000 0.001 0.003 

X2   - 16.57 43.31 

LogLik   -586.29 -572.92 (p<.01) -564.64 (p<.01) 

Table 1: Distribution of Earned Runs Compared to Theoretical Distributions 
  
  
Examining the χ2 against the actuals, the negative binomial distribution appears to the best fit.  
While there might have been a possible inflated number of zeros, the use of the zero inflated 
Poisson doesn’t necessarily apply. The application of zero-inflated Poisson is most notable 
when observations or respondents in the dataset didn’t have any opportunity for a treatment, 
such as functional decline in aging (Byers et al., 2003), insurance claims (Bouchere et al., 
2008), length of hospital stay with sepsis (Yang et al., 2010). 
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Having determined the most appropriate distribution, we next approach the issue of outliers. 
Identifying outliers is critical to ensuring proper predictions or estimates. Outliers are considered 
observations that deviate significantly from other observations, or raise concerns that the 
observations were a result of a different mechanism (Grubbs, 1950; Hawkins, 1980). Removal 
of proper outliers will provide different measures of performance in many cases (Grubbs, 1950). 
The impact of these removed observations should therefore yield results that are more 
indicative of true performance. 
  
Specifically, our aim is to identify an approach for the removal of outliers within a univariate data 
set for the purposes of using the standard metrics within baseball data. Combining all of the 
data of earned runs we examine what data points would be potential outliers. First, we apply the 
Tukey method for outlier identification for the right tail. Based on our complete dataset, the 
inside fence, i.e. Q3+1.5(Q3-Q1) is 6, and the outside fence is Q3 + 3(Q3-Q1), is 9. The method 
identified 9 points out of the 301 observations for the ten pitchers as being possible outliers. 
  
Further, we propose another method which examines the variance difference. The VSOM model 
described above for linear models removes observations with inflated variance (Gumedze et al., 
2010, Cook and Weisberg, 1982). Our objective is to narrow the range of outliers between the 
inner fence, which maybe too conservative, and the outer fence, which may not pick up outliers 
effectively. Since negative binomial distribution is count data, the raw difference could be as 
little as 1 or 2, but the impact of more accurately identifying the outliers are critical to the Earned 
Run Average. Specifically, we propose measuring the difference in variance attributed to the 
removal of high right side outliers. While, it may be possible to remove left side outliers, we do 
not examine this particular point. 
  
According to Cochran's theorem, under a normal distribution, the sample variance follows a chi-
squared distribution. In addition, it has been shown that the chi-squared distribution is a 
reasonable approximation for the index of dispersion (Loukas and Kemp, 1986). Thus, we 
combine this notion of comparing the updated variances to a Chi-squared distribution. Using this 
information, we calculate the right tail of the chi-squared distribution to identify which variances 
are beyond a certain point of the Chi-Square. 
  
In our case, 301 observations, the variance for the data set was 3.41 (s2 = 3.41). We then 
calculated the variance of the data when each observation is removed and calculate the 
difference. We compare this to a Chi-Square distribution with degrees of freedom equal to the 
mean of the differences. Using this method, we calculate the possible outliers and the number 
of outliers removed whose differences are greater than the calculated Chi-square statistic. 
  

  97.5% 98% 98.5% 99.0% 
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χ2 .0095 .0252 .0673 .1852 

Outlier Range 2-9 6-9 7-9 Inf / Inf 

# of outliers 94 15 9 0 

Table 2: Prospective outlier values 
  
  
Table 2 contains the results of prospective outlier values for the entire dataset. At 98.5% level, 
we remove the same number of outliers as the boxplot method, i.e. Tukey inner fence method. 
Since our aim is to identify possible outliers for each pitcher, we turn our attention to the 
removal of outliers for a given pitcher. 
  
By using the same method, we attempt to identify outliers for possible removal for each 
individual pitcher. However, due to the smaller sample size, i.e. the number of games per 
pitcher is approximately 30. After a few examinations, it became clear that we needed to extend 
the significance level down to 95%. When the confidence level is reduced we end up with the 
following table. 
  
 

Pitcher ID 95% 96% 97% 98% 99% Tukey Outliers 

1 1 0 0 0 0 1 

2 1 1 0 0 0 3 

3 1 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 1 1 0 0 0 1 

7 1 0 0 0 0 3 

8 1 1 0 0 0 2 
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9 0 0 0 0 0 0 

10 1 0 0 0 0 1 

 Table 3: Number of Possible Outliers at each level 
  
The numbers in the columns of Table 3 indicate the quantity of possible outliers at the given 
level. The last column contains the number of outliers identified using the Tukey, inner fence, 
method. It can be shown from the table above that the number of outliers identified by the 
proposed method matches in 6 cases. In only one case did the method, propose an outlier, 
when the Tukey method did not, otherwise the method was more conservative in the outlier 
estimation. Overall, for each individual pitcher the Tukey method identified 11 outliers, while 
using our proposed method, only 7 outliers were identified. 
  

Conclusion 
  
Our preliminary analysis shows that it is possible to identify outliers using the above proposed 
method. Since the Tukey multiplier of 1.5 and 3.0 are given as reasonable measures, our aim 
was to provide a more robust identification, that could be used for count data, which is a goal of 
this method. We believe this method shows promise for use in count data, specifically for 
baseball data, but clearly with applications in other areas such as healthcare hospital 
admissions or insurance claim analysis. 
  
It is believed that the confidence level for the Chi-square statistic is related to the size of the 
sample. When all the data is combined, it was shown that the confidence level could be more 
conservative, but when the sample drops to around 30, we find that the significance level drops 
to around 95%. We believe this will probably be a reasonable estimate for small samples. 
Further, the confidence level could be proportional to the sample size. 
  
Further research with larger sets and subsets are proposed in order to more fully examine the 
effect of this. While other research has been done in the identification of outliers, our purpose is 
to provide a simple approach, similar to Tukey, using a method based on a statistical distribution 
such as the Chi-Squared. In addition, this research should be extended to other count data sets 
to examine the differences between data from different distributions. Although the main focus of 
this paper was to detect right tailed outliers, further analysis should be conducted to identify left 
tailed outliers in the future. This analysis can be extended to the identification of false negatives 
and false positives on both left tail and right tail for more accuracy. 
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