Insights

There’s No Free Lunch, Stupid

“Tea is an act complete in its simplicity.
When I drink tea, there is only me and the tea.
The rest of the world dissolves” – Thich Nhat Hanh

A picture is worth a thousand words, and numbers have the capacity to summarize a picture with just a few statistics, especially in today’s data driven world. The right perspective is necessary for the right kind of analysis. It is not just employing the right technique , but rather, it’s implementation  determines the efficacy of the analysis and the relevance of the insight. Continue reading There’s No Free Lunch, Stupid

Why Lifetime value (LTV) calculations need Data Science 

Lifetime Value (LTV), sometimes referred to as Customer Lifetime Value (CLTV), is a technique used by businesses to predict the net profit of the entire future relationship with a customer. LTV is best thought of at a high-level as simply Total Customer Revenue – Total Customer Costs. Two key components to recognize and understand regarding LTV are the fact some customers hold more value than others and a customer is not just a single transaction but rather a relationship far more valuable than just a one-time deal. Continue reading Why Lifetime value (LTV) calculations need Data Science 

The Importance of ‘1’: A Different Perspective on Data Science

As data scientists, we are always looking for data, more data, different tools, or new techniques. We develop models enabling us to find higher areas of crime, make our society safer, or find ways to assist companies increase their profits or find efficiencies. Data scientists can help us identify patterns to determine what customers will buy, when they will buy it and where it will be bought. It can even assist the customer in making suggestions for cross-selling and up-selling opportunities and determining what customers will buy before they even buy it. The capabilities and opportunities of data science are endless and its uses are boundless.

Data scientists can easily forget the true nature of the data, since the massive amount of data available and the complexity of the techniques clouds each observation. Depending on the dataset, every single observation represents a human being, or a living being. Statisticians and data scientists have always referred to the the size of the sample as ‘n’, for example n=100, meaning 100 observations. However, when looking at large amounts of data, it obscures the most important ‘n’, n=1. ‘N’ equals one (N=1) could be you, your spouse, your friend, a sister or brother, a child or parent. It can be someone you know, or a friend of a friend. It is not uncommon for many data scientists to be working with a dataset and realize, that one of the observations refers to themselves.

When we analyze data, of course we analyze the numbers as they are, but we should inspect and respect the data, not as numbers but as human beings, as members of our community, or as a precious life. Of course we can de-identify the data as a means of protecting privacy, the fact that they represent a fellow human or even another life, such as a dog, cat, or other animal, cannot be ignored and should not be considered contrary to our mission as data scientists.

Data scientists must strive to conduct their analysis under a strong ethical code

When we apply this consideration to data science, I believe we are embarking on a new, moral, ethical branch of data science, which can be called Neohumanist data science. As data scientists, we are given an awesome responsibility to see the environment from a different lens. We are entrusted with the knowledge of how to find the proverbial needle in a haystack, and seek truth in the cloud of information. The decisions made from data science impact society as a whole and can greatly help our community, our country or our planet. Understanding the importance of the findings uncovered and its’ impact on the lives of others, therefore, becomes an entrusted gift, when we work with an unbiased perspective and a goal of finding the truth, wherever it may lead.

Data scientists, statisticians and business analysts should always strive to learn new techniques and perform the analyses requested. However, they should always maintain a moral compass that grounds them with a perspective of their responsibility to N=1. They must strive to conduct their analysis under an ethical code that prevents them from deliberately avoiding finding a preconceived truth to further a cause, regardless of the cause. They must never allow themselves to fall victim to Mark Twain’s statement that there are “Lies, damn lies, and statistics”. Becoming a neo humanist data scientist means they will always try and hold themselves to a standard unparalleled in our society. The knowledge, the data, and the tools provided are a gift, of sorts, and they are entrusted to data scientists to make sure that their work will cause no harm to any person, or living thing.

Trust your instincts

Recently, an executive at an online media firm had asked me to take a look at some data. His team had found some interesting results using some correlations of data points for his web activity. Unfortunately, he wasn’t convinced of what they were saying, because his intuition was telling him otherwise. However, he couldn’t refute the analysis, it was fairly sound. He decided to get another opinion. Continue reading Trust your instincts

Dr. Alex Pelaez Presents to Students at UPR

Today, Dr. Pelaez presented a speech on how companies are using analytics to transform their organization to students and faculty at the University of Puerto Rico, Rio Piedras. He spoke about the exciting field the students were entering, and provided the students with a glimpse of what their promising future holds. The talk, lasting over an hour and a half, highlighted the necessary skills companies require for students to land quality high paying jobs in analytics. Continue reading Dr. Alex Pelaez Presents to Students at UPR